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Abstract

We show that essentially every communication equilibrium of any
�nite Bayesian game with two players can be implemented as a strate-
gic form correlated equilibrium of an extended game, in which before
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sibly in�nitely long (but in equilibrium almost surely �nite), direct,
cheap talk.
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1 Introduction

Let us consider a standard Bayesian game, in which the players simulta-
neously choose actions as a function of their private information (or type).
This framework is useful to identify the parameters of the basic interactive
decision problem but does not account for possible nonbinding communica-
tion between the players, which enables them to exchange information and
to coordinate their actions. Such communication typically takes place at
the interim stage (namely, once the players know their type and before they
choose an action) and is conveniently modelled in extensions of the Bayesian
game.
As illustrated by a vast literature, communication may consist of a plain

conversation between the players (�cheap talk�) or be mediated by a third
party; it may last for one or several stages or even involve no deadline (see,
e.g., Forges and Koessler (2008) for a short survey). In spite of this variety,
a generalized revelation principle holds: the set of all Nash equilibrium out-
comes of all games that extend a given Bayesian game by allowing arbitrary
communication is nicely characterized as the set of all �canonical commu-
nication equilibria�. These are achieved with the help of a mediator who
�rst invites the players to reveal their types and then performs a lottery,
in order to privately recommend an action to each of them, as a function of
their reported types (see Forges (1986), Myerson (1986) and Myerson (1991),
chapter 6).
Canonical communication equilibria are very tractable but rely on a cen-

tralized mediator, who collects the private information of the players. Plain
conversation between the players is much more natural and preserves the
players�privacy. Hence the question:
Can all canonical communication equilibrium outcomes be implemented by

means of cheap talk, i.e., as Nash equilibrium outcomes of an appropriately
designed extended game in which the players can talk?
Partially or even fully positive answers have been given in �nite Bayesian

games, in which types and actions take �nitely many values, as soon as the
number of players is at least three1. However, for two players, the answer
is in general negative. Consider for instance the particular case where every
player has a single type (complete information); in a plain conversation,

1Game theoretical references involve, e.g., Bárány (1992), Forges (1990b), Ben Porath
(1998, 2003, 2006) and Gerardi (2004). See, e.g., Halpern (2008) for references in computer
science.
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both players know all the messages that they exchange, hence they cannot
simulate the private recommendations of a mediator. More precisely, in a bi-
matrix game, communication equilibria coincide with Aumann (1974, 1987)�s
correlated equilibria, while the set of Nash equilibrium outcomes of a cheap
talk extension of the game is always included in the convex hull of the set of
Nash equilibrium outcomes of the bi-matrix game.
As a very di¤erent particular case, consider a two-person (�nite) Bayesian

game with a single informed player, whose actions are not payo¤ relevant,
and a decision maker. In the original Bayesian game, the players choose
their actions simultaneously so that the informed player cannot transmit
information to the decision maker. Allowing a single stage of cheap talk,
from the informed player to the decision maker, transforms the game into a
sender-receiver game2. Examples show that, in that framework, there may
exist communication equilibrium outcomes which cannot be achieved as Nash
equilibrium outcomes of the sender-receiver game (see, e.g., Forges (1985)3).
Even more, some communication equilibrium outcomes cannot even be im-
plemented by �long cheap talk�, in which both players exchange costless
messages for as many stages as they like (see Forges (1990a)4).
Should the previous negative results lead us to forget about implementing

communication equilibrium outcomes by cheap talk in two-person Bayesian
games? Of course, no: two-person games are the prototype of interactive
decision problems, as illustrated by the most popular game theoretical ex-

2Sender-receiver games were �rst studied by Crawford and Sobel (1982) and Green and
Stokey (2007). Their model involves types and actions in a real interval and thus does not
pertain to the �nite setup that will be adopted in this paper.

3The framework in Forges (1985) is an in�nitely repeated game but the results are
easily reformulated in one-shot games with cheap talk (see exercise 6.9 in Myerson (1991)).
Krishna and Morgan (2004) concentrate on Crawford and Sobel (1982)�s uniform quadratic
example. They show that two stages of cheap talk enable the players to Pareto improve
on all equilibria achieved with a single stage of cheap talk, when the bias b re�ecting the
con�ict of interest between the sender and the receiver is not too large, namely when
b � 1p

8
. Goltsman et al. (2009) show that, if b � 1

8 , Krishna and Morgan (2004)�s cheap
talk equilibria are optimal communication equilibria. Goltsman et al. (2009) also establish
that �nitely many stages of cheap talk achieve the optimal communication equilibrium
outcome if and only if b � 1

8 .
4The example in Forges (1990a) explicitly deals with long cheap talk before a single

decision stage, but relies on techniques developed by Hart (1985) and Aumann and Hart
(1986) for in�nitely repeated games with incomplete information. Aumann and Hart (2003)
use this approach to characterize all Nash equilibrium outcomes of any long cheap talk
game with a single informed player.
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amples. But the above counter-examples teach us that, to implement all
communication equilibrium outcomes of a two-person game, we have to re-
lax the notion of cheap talk in some way. For instance, Dodis, Halevy and
Rabin (2000) and Urbano and Vila (2002) rely on cryptographic tools devel-
oped in computer science, namely assume that the computational ability of
the players is limited. Under this assumption, they show that the correlated
equilibrium outcomes of any two-person game with complete information can
indeed be implemented as (��) Nash equilibrium outcomes of a cheap talk
extension of the game. Ben-Porath (1998) obtains a similar result by allow-
ing the players not only to talk but also to make use of urns or envelopes.
Generalizations to games with incomplete information have been proposed
by R.V. Krishna (2007) and Izmalkov, Lepinski and Micali (2010) for the
latter approach and by Urbano and Vila (2004) for the cryptographic one.
The common feature of these solutions is that at every stage, cheap talk is
relaxed in some way: limited computational ability or physical hard devices
are used to exchange messages at every stage.
In this paper, we follow another avenue and maintain the standard notion

of cheap talk. The players are not subject to any deadline and cannot use any
common device (like urns, envelopes or recording machines) while they talk
(but each player is of course free to use any personal device to make his own
choices). However, we assume that, before they start to talk, the players can
privately observe some signal, a sunspot, which is totally extraneous to the
game (i.e., independent of the players�types and without any direct e¤ect
on the payo¤s)5. Following Aumann (1974, 1987), the players�signals can
be correlated and the set of all Nash equilibrium outcomes of the extended
game in which the players �rst observe their signal has a tractable canonical
representation. In our framework, the canonical signal of each player takes
the form of a recommendation on how to talk and how to make a decision at
the end of the cheap talk phase.
In other words, we consider strategic form correlated equilibria (in the

sense of Aumann (1974, 1987)) of a long cheap talk game extending the
original Bayesian game. Our main result can be stated as follows. Fix any
two-person Bayesian game � and any (strictly individually rational) commu-
nication equilibrium outcome of �; we design a long cheap talk extension

5As in Forges (1988), we do not reserve the term �sunspot� to a common, public,
extraneous signal. The interpretation is that every player observes the sunspots in his
own way.
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ext� of �, with �nitely many messages at every stage, together with a cor-
relation device for the cheap talk game ext�, with the following properties:
(i) no player can gain by unilaterally deviating from the recommendation of
the correlation device in ext� and (ii) the outcome, namely the conditional
probability distributions generated by the correlation device and strategies
in ext� over actions given types, are exactly the same as in the communica-
tion equilibrium. In this construction, the size of the �nite set of messages
depends on the parameters of the Bayesian game and on the underlying
communication equilibrium. By considering a countable set of messages, we
can get at once all (strictly individually rational) communication equilibrium
outcomes of any Bayesian game as correlated equilibrium outcomes of a uni-
versal cheap talk game, as in Forges (1990b) for games with at least four
players6. Our cheap talk game ext� is possibly in�nitely long in the sense
that its length is not �xed in advance, in a deterministic way, but depends
endogenously on the messages exchanged by the players.
Our result extends Forges (1985), which focuses on the case of a single

informed player and a single decision maker. One stage of cheap talk suf-
�ces then to implement all communication equilibrium outcomes. Recently,
Blume (2010) established a similar result in the context of Crawford and So-
bel (1982)�s sender-receiver game. Forges (1985)�s construction goes through
if payo¤ relevant actions are added for the single informed player. However,
the general case, where both players are privately informed and make deci-
sions, remained open until Vida (2006) proposed a �rst solution7.
When trying to implement a given communication equilibrium by cheap

talk in a two-person game in which both players have private information and
must take actions, the main problem is to guarantee that no player learns
useful information before the other. Full detection of possible deviations dur-
ing the cheap talk phase can be of no help if it happens too late. Indeed,
there may be no way to �punish�a deviator once he possesses the desired
information. In order to solve the problem, the basic idea is that the correla-
tion device selects a relevant stage t� of the cheap talk phase, without telling
it directly to the players. How will the players �gure out when they reach it?
At the end of every stage t of cheap talk, they simultaneously discover from

6Forges (1990b) also proposes a cheap talk game with a continuum of messages which
is universal for all three person games.

7The main result in this paper can already be found in Vida (2006)�s unpublished
doctoral dissertation (see also Vida (2007a)). The proof proposed in this paper is a sim-
pli�cation of the original one.
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their exchanged messages whether stage t was relevant (i.e., t = t�) or not.
Useful information is only exchanged at the relevant stage t�, but the players
realize this at the end of the stage. In addition, at every stage, each player
can check whether the other�s message was legitimate or not. If the stage
is not relevant, the players�information is not updated so that illegitimate
messages can give rise to punishments.
As indicated in the previous paragraphs, our construction makes use of

possibly in�nitely long cheap talk. To which extent does our implementation
result rely on an in�nite horizon? We prove that, at the correlated equilib-
rium which implements a given communication equilibrium, cheap talk lasts
for �nitely many stages almost surely. We also propose an example (in sec-
tion 5) in which an e¢ cient communication equilibrium outcome cannot be
achieved as a correlated equilibrium outcome, in any cheap talk game with
a bounded number of stages. Nonetheless, if the underlying game � has a
strictly individually rational Bayesian-Nash equilibrium (a condition which
holds in the previous example), every (strictly individually rational) commu-
nication equilibrium payo¤ can be approximated by a correlated equilibrium
payo¤ of a su¢ ciently long cheap talk game (proposition 1 in section 4).
The brief sketch above also suggests that our construction makes use of

punishments. This should not be surprising in view of the literature on the
implementation of a mediator by cheap talk (see Bárány (1992) for an early
example, Heller et al. (2011) for a recent one, Ben-Porath (2003, 2006) and
Gerardi (2004) for discussions and solutions to the problem, Forges (2009)
for a survey). Are these punishments credible? To formulate this question
more precisely, recall that, according to our result, every communication
equilibrium of a Bayesian game � can be implemented as a Nash equilibrium
of an extended game (ext�)�, in which a correlation device � sends private
signals to the players before they talk. Can we re�ne this Nash equilibrium so
as to capture the players�sequential rationality, e.g., into a perfect Bayesian
equilibrium? Proposition 2 (section 4) gives su¢ cient conditions for a positive
answer.
We implement communication equilibria of a given Bayesian game as

correlated equilibria of the game preceded by cheap talk. Hence we replace
the communication device by a correlation device, that is to say, a mediator
by another! What do we really gain from our construction? As argued by
Forges (1985, 1988, 1990b) and recently by Blume (2010), the mediators
implicitly involved in the two solution concepts are very di¤erent from each
other. In a (canonical) communication equilibrium of the original game, the
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mediator gets to know the whole information of every player. However, in a
correlated equilibrium of the cheap talk game, the mediator does not receive
any information from the players. He makes recommendations on how to
exchange messages but remains fully ignorant of the players� types. With
such a mediator, players can preserve their privacy.
Let us turn to the organization of the paper. In the next section, we

recall the concepts of Bayesian game and communication equilibrium. Then,
in section 3, we describe the extension of the game in which the players can
talk and we de�ne correlated equilibrium in that game. In section 4, we state
the main result as theorem 1 and the two propositions mentioned above; the
reader familiar with our basic concepts can go to the statements right away.
Section 5 is devoted to an example which illustrates our results. Section 6
contains the proofs. Finally, section 7 discusses some variants of the model.

2 Basic game, communication equilibrium

Let us �x a two-player �nite Bayesian game � � < fLi; Ai; gigi=1;2 ; p >: for
every player i = 1; 2, Li is a �nite set of possible types, Ai is a �nite set of
actions and gi : L�A! R is a von Neumann-Morgenstern utility function,
where L = L1 � L2 and A = A1 � A2; p 2 �L is the players�common prior
over L.
� starts with a move of nature, which selects l = (l1; l2) 2 L according

to p; player i is only informed of his own type li, i = 1; 2. Then the players
simultaneously choose actions a1 2 A1 and a2 2 A2, respectively; let a =
(a1; a2). The respective payo¤s are g1(l; a) and g2(l; a).
A (canonical) communication device8 q for � is a transition probability

from L to A, q : L! �A, namely a system of probability distributions q(:jl)
over A for every l 2 L. By adding a communication device q to the Bayesian
game, one generates an extended game �q, which is played as follows:

1. Every player i learns his type li as in �, i = 1; 2.

2. Every player i sends a private message l̂i 2 Li to the communication
device q; let l̂ = (l̂1; l̂2).

3. q selects an action pro�le a = (a1; a2) with probability q(ajl̂).
8See Forges (1986, 1990b) and Myerson (1986, 1991).

7



4. q sends ai privately to player i, i = 1; 2.

5. The players choose actions and receive payo¤s as in �.

Some strategies are of special interest in �q: player i is sincere in �q if he
reveals his type to the communication device at stage 2, namely l̂i = li for
every li 2 Li; player i is obedient if at stage 5, he follows the recommendation
ai made by the communication device at stage 4, whathever his type. When
both players are sincere and obedient, the expected payo¤ of player i of type
li is9:

Gi[qjli] =
X
l�i

p(l�ijli)
X
a

q(ajli; l�i)gi((li; l�i); a) li 2 Li; i = 1; 2: (1)

Let G[q] = (Gi[qjli])li2Li;i=1;2 be the pair of vector payo¤s associated with q.

De�nition 1 Let q be a (canonical) communication device for �. q is a
(canonical) communication equilibrium of � if and only if the sincere and
obedient strategies form a Nash equilibrium of �q, namely, i¤

Gi[qjli] �
X
l�i

p(l�ijli)
X
ai;a�i

q(ai; a�ijl̂i; l�i)gi((li; l�i); ri(ai); a�i)

for i = 1; 2; li; l̂i 2 Li and for all ri : Ai ! Ai. ME(�) denotes the set of
communication equilibrium10 payo¤s of �, namely

ME(�) = fG[q]jq is a communication equilibrium in �g � RjL1�L2j.

Thanks to the general revelation principle recalled in the introduction
(see, e.g., Forges (1990b)),ME(�) is the set of all payo¤s that can be achieved
at a Nash equilibrium of an arbitrary extension of � allowing the players to
communicate (possibly with in�nitely many stages and relying on a mediator
at every stage).

De�nition 2 A payo¤ vector (xi(li))li2Li 2 RjLij is (strictly) interim in-
dividually rational for player i = 1; 2 (or interim supportable with (strict)

9When the index i refers to one of the two players, �i refers to the other one.
10We use the notation ME as a reminder of �mediated equilibrium�; we keep CE for

�correlated equilibrium�.
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punishment) in � if there is a strategy of the other player in �, namely, a
transition probability y�i : L�i ! �A�i, such that for all li 2 Li,

xi(li) � (>) max
ai2Ai

X
l�i

p(l�ijli)
X
a�i

y�i(a�ijl�i)gi((li; l�i); ai; a�i):

(S)INTIR(�) denotes the set of vectors in RjL1�L2j that are (strictly) interim
individually rational for both players.

Observe that, in general, (S)INTIR(�) depends on the prior probability
distribution p in �. In games with complete information (i.e., when jL1j =
jL2j = 1), the de�nition reduces to the standard one, namely xi is (strictly)
individually rational for player i i¤

xi � (>) min
y�i2�A�i

max
ai2Ai

X
a�i

y�i(a�i)gi(ai; a�i)

The following lemma, which will be used later, states that interim indi-
vidual rationality always holds at a communication equilibrium.

Lemma 1 ME(�) � INTIR(�).

Proof
Let q be a communication equilibrium and li 2 Li be a type of player i;

for any bi 2 Ai and l̂i 2 Li,

Gi[qjli] =
X
l�i

p(l�ijli)
X
a

q(ajli; l�i)gi((li; l�i); a) �

X
l�i

p(l�ijli)
X
ai;a�i

q(ai; a�ijl̂i; l�i)gi((li; l�i); (bi; a�i)) =

X
l�i

p(l�ijli)
X
a�i

q(a�ijl̂i; l�i)gi((li; l�i); (bi; a�i))

Hence one can set y�i(a�ijl�i) = q(a�ijl̂i; l�i) for some l̂i 2 Li as punishment.�

Observe that, in the previous proof, �punishment�is mostly a convenient
terminology. More precisely, consider the following strategy of player i in �q:
at stage 2, he reports type l̂i whatever his type; at stage 5, he plays an arbi-
trary action bi, independently of the recommendation of the communication
device. This strategy of player i can be interpreted as �non-participation�.
If player j = �i plays the strategy y�i in the previous proof, player i�s payo¤
is the same as when he does not participate.
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3 Cheap talk game, correlated equilibrium

In this section, we �rst extend the basic game � � < fLi; Ai; gigi=1;2 ; p > by
means of a long cheap talk phase; then we de�ne correlated equilibria in this
extended game.
Let M be a �nite set of messages; let c (�continue�) and s (�stop�) be

two additional messages available to the players. We de�ne the multistage
game extM� as follows:

Stage 0: every player i learns his type li as in �, i = 1; 2.

Stage 1: the players simultaneously send the message c or s to each other. If
they both selected c, they simultaneously send a message inM to each
other and they proceed to stage 2. Otherwise, every player i chooses
an action in Ai, payo¤s are given as in �, the game stops.

Stage t (t = 2; 3; :::): if the game has not stopped at an earlier stage, the
players simultaneously send the message c or s to each other. If they
both selected c, they simultaneously send a message inM to each other
and they proceed to stage t + 1. Otherwise, every player i chooses an
action in Ai, payo¤s are given as in �, the game stops.

The previous scenario fully describes the players�possible moves in the
game extM�, and the payo¤s if the moves make the game stop at some stage
t. The scenario also allows the game to go on forever, which is unavoidable if
the length of communication is not �xed in advance (see, e.g., Forges (1990a),
Gossner and Vieille (2001), Aumann and Hart (2003)). We thus have to de�ne
the payo¤s in the case of in�nitely long cheap talk, even if this event will
typically be o¤ the equilibrium path. Since there is no particular outcome
to be identi�ed in our general Bayesian game, we assume, as Gossner and
Vieille (2001) and Aumann and Hart (2003), that, if communication goes on
forever, the players make their decisions �at in�nity�.
Let Ht = (M �M)t�1, t = 1; 2; :::, be the set of all pairs of messages in

M possibly sent before stage t and let H1 = (M �M)N. We provide these
sets with a measurable structure, in the standard way: let Ht be the algebra
over H1 generated by cylinder sets of the form ht�1 �H1, where ht�1 is a
sequence in Ht. Let H1 be the �-algebra over H1 generated by the algebras
Ht; t = 1; 2; ::: Finally, N = ff1g ; f2g ; f1; 2gg describes the sets of players
possibly choosing s at some stage.
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A pure strategy �i for player i (i = 1; 2) in extM� is a sequence of
measurable mappings, �i = [(�it;m

i
t; d

i
t)t�1; d

i
1], where

�it : L
i �Ht ! fc; sg; mi

t : L
i �Ht !M; t = 1; 2; :::

dit : L
i �Ht �N ! Ai; t = 1; 2; ::: di1 : L

i �H1 ! Ai

These mappings are interpreted as follows: �it describes player i�s decision
to continue or stop at stage t if the game is still going on at that stage,
mi
t describes which message in M he sends if both players have decided to

continue at stage t, dit describes the action he chooses according to which
player(s) decided to stop at stage t; di1 describes the action he chooses if
communication goes on forever.
Let � = (�1; �2) be a pair of pure strategies in extM� and let l = (l1; l2)

be a pair of types chosen at stage 0. If, for these types l, � induces the game
to stop at stage t, namely if � leads one of the player to choose s at stage
t, as a function of the past history, then the payo¤s associated with l and �
are computed using the mappings dit and the utility functions g

i. If for these
types l, � induces cheap talk to last forever, the payo¤s associated with l and
� are computed in a similar way, using the mappings di1. Payo¤s in extM�
are thus well-de�ned and the de�nition of the game is complete.
As explained in the introduction, the players cannot hope to implement

all communication equilibrium outcomes of � by cheap talk, namely as equi-
librium outcomes of extM� for some set of messagesM , without randomizing
their strategies in a correlated way.
A correlation device consists of a probability space (
;B; �), together

with sub-�-algebras B1 and B2 of B. (
;B; �) represents extraneous events
(�sunspots�), which happen independently of � (and extM�), in particular
independently of the types in L; Bi, i = 1; 2, represents player i�s private
information on the extraneous events. In order to achieve our implementation
goal, we shall only make use of simple and well-behaved correlation devices,
typically describing discrete random variables.
By adding a correlation device [(
;B; �);B1;B2] to extM�, we get a new

extended game, (extM�)�, in which before stage 1 of extM�, every player
i gets private information in Bi on an extraneous event, selected in (
;B)
according to �. This lottery can take place before or after stage 0, but is
independent of the players�prior p. In (extM�)�, every player i makes his
strategic choices as a function of his extraneous information, described by
Bi (i = 1; 2). Proceeding as in Aumann and Hart (2003), a pure strategy
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�i for player i (i = 1; 2) in (extM�)� is a sequence �i = [(�
i
t;m

i
t;d

i
t)t�1;d

i
1]

of Li � Ht � Bi-measurable mappings describing player i�s move at stage t
(including 1), where

�it : L
i �Ht � 
! fc; sg; mi

t : L
i �Ht � 
!M; t = 1; 2; :::

dit : L
i �Ht �N � 
! Ai; t = 1; 2; ::: di1 : L

i �H1 � 
! Ai

De�nition 3 A correlated equilibrium of extM� is a Nash equilibrium of
(extM�)

�, for some correlation device [(
;B; �);B1;B2]. CE(extM�) denotes
the set (� RjL1�L2j) of all correlated equilibrium payo¤s of extM�.

4 Implementing communication equilibria by
cheap talk

In this section, we �rst state the main theorem, in terms of the standard cor-
related equilibrium solution concept. After having deduced two immediate
corollaries, we give a sketch of the proof, which clari�es the use of unbound-
edly long cheap talk and indicates the role of punishments. We then turn
to �approximate implementation�with �nitely long cheap talk (proposition
1). Finally, we give su¢ cient conditions for implementation in sequentially
rational strategies (proposition 2).
The prior probability distribution p over L, the probability distribution �

of a correlation device and strategies (�1;�2) in extM� induce a probability
distribution over 
 � L � H1 � A and thus also conditional probability
distributions over A, given every l 2 L.

Theorem 1 Let � � < fLi; Ai; gigi=1;2 ; p > be a two-person �nite Bayesian
game and q be a communication equilibrium of � such that G[q] 2 SINTIR(�).
There exist a �nite set of messagesM and a correlated equilibrium of extM(�),
the cheap talk extension of � with messages in M , which induces the condi-
tional probability distribution q(:jl1; l2) over actions (i.e., over A1 � A2) for
every pair of types (l1; l2) 2 L1�L2; in particular, the payo¤ of the correlated
equilibrium is G[q]. Moreover, the correlated equilibrium of extM(�) is such
that cheap talk lasts for �nitely many stages almost surely.

In this statement, the set of messages depends on the parameters of �
and of q. If we allow for countably many messages, i.e., if we consider the
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extended cheap talk game ext� in which M = N, we can get all strictly
individually rational communication equilibrium payo¤s at once: ME(�) \
SINTIR(�) � CE(ext�). Recall that, by lemma 1, ME(�) � INTIR(�);
the restriction imposed on communication equilibrium outcomes is thus a
relatively mild one. Conversely, by proceeding as in general versions of the
revelation principle, one can show that CE(ext�) � ME(�). Hence we get
the following corollary11:

Corollary 1 ME(�) \ SINTIR(�) = CE(ext�) \ SINTIR(�)

Remark that, once N is the set of messages, cheap talk in ext� is described
in a universal way, i.e., independently of the underlying Bayesian game �, as
in Forges (1990b).
Corollary 1 can be interpreted as a characterization of the correlated

equilibrium payo¤s of the long cheap talk game ext�, since it states that
CE(ext�) and ME(�) essentially coincide12. In order to make the relation-
ship between the two sets more precise, let us denote the closure of CE(ext�)
as CE(ext�).

Corollary 2 If ME(�) \ SINTIR(�) 6= ;, CE(ext�) =ME(�).

Proof of corollary 2
ME(�) being closed, CE(ext�) � ME(�). In order to see the converse,

we show that, ifME(�)\SINTIR(�) 6= ;, thenME(�) �ME(�) \ SINTIR(�).
Let x 2ME(�). By lemma 1, x 2 INTIR(�); let x� 2ME(�)\SINTIR(�),
let �n be a sequence in (0; 1) such that �n ! 1 and let xn = �nx+(1��n)x�.
ME(�) being convex, xn 2ME(�) and from the inequalities in de�nition 2,
it is readily checked that xn 2 SINTIR(�); �nally, xn ! x.�

Sketch of the proof of theorem 1
Let q be a communication equilibrium of �. We gradually construct a set

of messagesM , a correlation device � for extM(�) and equilibrium strategies

11In this statement and the next ones, we do not recall that � is a �nite two-person
Bayesian game.
12Aumann and Hart (2003) show that, even if only one of the players has private infor-

mation in � (if, e.g., jL2j = 1), the characterization of the Nash equilibrium payo¤s of the
game ext� is fairly complex, as it relies on the martingales generated by the long cheap
talk. On the contrary, most correlated equilibrium payo¤s of ext� are characterized in a
tractable way, as communication equilibrium payo¤s of the original Bayesian game �.
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in (extM�)� which induce the transition probability q. The correlation device
� �rst selects, independently for every l 2 L, a pair of actions al = (a1l ; a2l ) 2
A according to q(:jl). If the players could reveal their types to each other,
the correlation device could send them (al)l2L before the beginning of �.
In order to keep the correlated equilibrium conditions as close as possible

to the communication equilibrium conditions, the correlation device � selects
permutations �i of Li (i = 1; 2) to encrypt player i�s type li and permutations
�i�(l) of A

i (i = 1; 2, l 2 L) to encrypt player i�s recommended action ai�(l).
Before the beginning of �, the device tells player i how to encrypt his type
(namely, �i) and how to decrypt his recommended action (namely, �i�(l),
l 2 L). Every player�s encrypted, recommended action is transmitted by
the other player. More precisely, the correlation device tells to player i the
encrypted actions bj�(l) = �

j
�(l)(a

j
�(l)), l 2 L, j 6= i.

At the �rst stage of cheap talk, the players can simultaneously send their
encrypted type to each other; let �(l) be the pair of messages. Let us imagine
that, at a second stage of cheap talk, the players send simultaneously the
corresponding encrypted actions bj�(l) to each other. The communication
equilibrium conditions guarantee that a player cannot gain in lying on his
type at the �rst stage nor on deviating (at the decision stage) from the action
(�i�(l))

�1(bi�(l)) that he decrypts at the second stage. In other words, at this
point, the correlation device mimics q.
However, the communication equilibrium conditions do not ensure that

a player correctly transmits the encrypted action of the other player at the
second stage. To �ll this gap, the correlation device � chooses a �code�
ki(�(l); ai) in some large set, independently and uniformly, for every pair of
encrypted types �(l) and every possible action ai, i = 1; 2. The correlation
device tells to player i the whole mapping ki but only kj(�(l); bj�(l)), l 2 L,
for j 6= i. If, given a pair of messages �(l), player i transmits aj 6= bj�(l) to
player j, he will, with high probability, not guess correctly the corresponding
code kj(�(l); aj). In this case, he will be detected and punished by player j.13

The equilibrium strategies suggested in the previous paragraph raise two
problems. The �rst one, which is not typical of our construction (see, e.g.,
Bárány (1992) and Heller et al. (2011)), is that punishments may appear as
incredible threats. We will come back to this below. The second and most

13Similar codes were used in Forges (1990b) in order to allow a player to check with
high probability whether another player correctly transmits information generated by a
correlation device.
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important issue is that, if player i unilaterally deviates at the second stage
of cheap talk and does not transmit the correct encrypted, recommended
action bj�(l) to player j, player i typically receives a correct recommendation
at the same stage. Player i may thus have updated his beliefs in such a way
that player j cannot maintain player i�s payo¤ below the communication
equilibrium payo¤.14

In order to solve the second problem, we do not �x the number of stages
of cheap talk in extM(�). Encrypted types are still exchanged only once at
the �rst stage, but the correlation device � chooses a relevant stage t? � 2
according to a geometric distribution. The previous encrypted, recommended
actions, whose distribution is determined by q, are selected for stage t? only.
For all stages t 6= t?, the correlation device � selects encrypted, recommended
actions uniformly. Codes are selected at every stage t, as described above.
The key is that the players only discover whether stage t (� 2) is relevant

or not, i.e., whether t = t?, at the end of stage t, after having exchanged
messages. If one of the player j detects an incorrect code in player i�s message
at the end of stage t, then, with high probability, t 6= t?, so that player i�s
belief over L is still the prior p and player j can punish player i (strictly)
below his communication equilibrium payo¤(which belongs to SINTIR(�)).
Strict punishment takes care of the small probability that deviation luckily
happens at t?.
There remains to explain how the players discover whether t = t? at the

end of every stage t � 2. The correlation device � selects �labels��it such
that �1t = �2t if and only if t = t?. By exchanging their labels at the same
time as the encrypted, recommended actions and their codes, the players can
recognize t?. In order to prevent cheating on the labels, codes are associated
to the labels as well. For every t � 2, the correlation device � tells to player
i the code �i(t; �it) of his own label �

i
t at stage t, together with the whole

mapping �j(t; :). This completes the description of the correlation device �.
Regarding strategies, if player j detects an incorrect label code in player i�s
message, player j punishes player i.�

Theorem 1 is proved in full details in section 6. In particular, we show how
to compute precisely the size of the set of messages M and the parameter of
the geometric distribution choosing t?.

14Ben-Porath (2003) identi�es this issue in games with three players or more, but does
not provide a thorough solution (see Ben-Porath (2006)). We illustrate the di¢ culty on a
two-person game in section 5.
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Approximation with �nite cheap talk
Theorem 1 is stated in terms of the in�nitely long cheap talk game

extM(�). For T � 2, let us denote as extTM(�) the extension of � in which
the players cannot talk for more than T stages. In section 5, we show on
an example that there may exist a communication equilibrium payo¤ which
cannot be achieved as a correlated equilibrium payo¤ of extTM(�), for any T .
A natural question is thus whether every communication equilibrium payo¤
of a Bayesian game � can be approximated by a correlated equilibrium pay-
o¤ of a su¢ ciently long cheap talk game extending �. A positive answer is
given in the following proposition and illustrated in section 5. The result is
formally established after the proof of theorem 1, in section 6.

Proposition 1 Let us assume that � has a Bayesian-Nash equilibrium payo¤
which belongs to SINTIR(�). Let x = G[q] 2 ME(�) \ SINTIR(�) and
let � > 0; there exist a �nite set of messages M , a �nite number of stages T
and a payo¤ vector x� ��close to x such that x� 2 CE(extTM�).

Implementation in sequentially rational strategies
The proof of theorem 1 makes use of punishment strategies which may

not be �credible�, in the sense that they apply to any communication equi-
librium payo¤ in SINTIR(�) and are thus akin to minmax strategies. A
standard way to guarantee credible punishments is to focus on communica-
tion equilibrium payo¤s that are not only strictly individually rational, but
even dominate a Bayesian-Nash equilibrium. Ben-Porath (2003, 2006) studies
the implementation of such particular communication equilibria in Bayesian
games with three players or more.

De�nition 4 A payo¤ vector ((xi(li))li2Li)i=1;2 2 RjL1�L2j in � is Nash-
dominating if there exists a Bayesian-Nash equilibrium payo¤ � = (�i(li)li2Li)i=1;2
in � such that

xi(li) > �i(li) for every i = 1; 2 and li 2 Li.

For Nash-dominating payo¤s15, theorem 1 can be restated in terms of a
version of the perfect Bayesian equilibrium (PBE) solution concept, which

15Nash domination is by no means a necessary condition as illustrated for instance by
the sender-receiver case (see Forges (1985) and section 7.2).
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we call semi-weak PBE16. More precisely, we require sequential rationality
at every information set and Bayesian updating on the equilibrium path as
in the weak PBE (see, e.g., Mas Colell et al. (1995) or Myerson (1991),
who refers to �weak sequential equilibrium�). We further impose a natural
restriction on the players�beliefs out o¤ equilibrium path, in the vein of the
condition of �action-determined beliefs�of Osborne and Rubinstein (1994)
(see also Fudenberg and Tirole (1991)), which we de�ne precisely below, after
the statement of proposition 2.

Proposition 2 Let us assume that the prior p of � � < fLi; Ai; gigi=1;2 ; p >
has full support and that x = G[q] 2 ME(�) is Nash-dominating. There
exist a �nite set of messages M and a correlation device [(
;B; �);B1;B2]
for extM(�) such that x is a semi-weak perfect Bayesian equilibrium payo¤
of (extM�)�.

The reason to restrict to a prior p with full support is well explained in
Gerardi (2004). As his example 1 illustrates, without full support of the prior
p in �, there may exist communication equilibria that can only be achieved
by means of a communication device recommending a strictly dominated
action to one of the players when a type pro�le of zero probability under
p is reported. Such communication equilibria cannot be implemented with
sequentially rational strategies, even if the implementation process does not
rely on any punishment.
In order to make precise the condition on beliefs behind our semi-weak

PBE, let � be an equilibrium of (extM�)� and let ht�1 be a sequence of
messages before stage t, i.e., ht�1 2 Ht = (M �M)t�1; let mt = (m1

t ;m
2
t )

be a pair of messages at stage t. Assume that the probability of ht�1 given
li and Bi is positive under the distribution induced by p, � and �. Then
the belief of player i over Lj given li, Bi, ht�1 and mt does not depend on
mi
t. This condition guarantees that, in the previous sketch of the proof of

theorem 1, a �lucky deviator�(who does not transmit the correct encrypted
action to the other player at stage t, but correctly guesses its code and then
dicovers that t? = t) updates his belief on the other player�s type.

16We limit ourselves to strengthening the rationality of the speci�c equilibrium strategies
constructed in the proof of theorem 1, without addressing the question of an appropriate
de�nition of re�ned correlated equilibrium (see, e.g., Dhillon and Mertens (1996) for a
discussion of this topic).
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In section 6.3., we establish proposition 2 by using the same correlation
device [(
;B; �);B1;B2] and the same set M of messages as in the proof of
theorem 1.

5 An example

We consider a variant of the �secret sharing�problem, which is well-known in
computer science (see for instance Abraham et al. (2008)). The secret sharing
game � will be derived from an auxiliary game �̂, in which both players have
two equally likely possible types in S1 = S2 = f0; 1g, to be referred to as
�payo¤ types�. The payo¤ types of the players are chosen independently of
each other. Every player has two possible actions: A1 = A2 = f0; 1g; the
payo¤ functions gi : S1� S2�A1�A2 ! R, i = 1; 2, are summarized in the
following table:

g s2 0 1

s1 A 0 1 0 1
0 3; 3 6;�2 0; 0 �2; 6

0 1 �2; 6 0; 0 6;�2 3; 3
0 0; 0 �2; 6 3; 3 6;�2

1 1 6;�2 3; 3 �2; 6 0; 0

The interpretation is as follows : the secret is s = s1 + s2 (mod 2). Given
the secret s 2 f0; 1g, the �right�(resp., �wrong�) action is to play according
to the secret, namely ai = s (resp., ai 6= s); both players have the same
preferences: being the only one to take the right action is preferred to both
taking the right action, which is preferred to both taking the wrong action,
which is itself preferred to being the only one to take the wrong action.
In the game �̂, the pair of expected payo¤s (3; 3) can only be achieved as a

completely revealing outcome, in which both players take the right action17.
But complete revelation cannot be achieved at a communication equilibrium
of �̂: every player can gain in lying unilaterally about his payo¤ type in order
to be the only one to take the right action.

17In order to see this, let q(:jl), l 2 L, be conditional probability distributions over
actions given types achieving the pair of expected payo¤s (3; 3) in the game �̂. Every
q(:jl) is a distribution over the same payo¤s f(0; 0); (�2; 6); (3; 3); (6;�2)g, in which (3; 3)
is an extreme point.
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We now modify �̂ into a more complex game �. In �, the payo¤ type of
every player is enriched into a �full type�, which is highly correlated to the
full type of the other player. More precisely, player i�s type in � is denoted
as li and consists of a 4�tuple; the �rst component of li is player i�s payo¤
type si. In order to de�ne the other three components of li, let E be a �nite
set, and let jEj denote the number of elements in E. E will be interpreted
as a set of �codes�. The sets of types in � are Li = f0; 1g � E � E � E,
i = 1; 2. In �, nature �rst makes the following choices:

1. a pair of payo¤ types (s1; s2), as in �̂

2. 4 codes e10; e
1
1; e

2
0; e

2
1 in E, independently of each other, with probability

1
jEj each.

Player i�s type is li = (si; eisi ; e
�i
0 ; e

�i
1 ), i = 1; 2, i.e., player i is informed of

his payo¤ type si, of the code eisi 2 E of his payo¤ type si and of the codes
e�i0 and e�i1 of the two possible payo¤ types of the other player. Player i is
not informed of the code of the other possible payo¤ type he might have,
nor on the payo¤ type of the other player, of course. The action sets and
the payo¤ functions in � are the same as in �̂, in the sense that payo¤s only
depend on payo¤ types and actions.
If player i can talk to the other player j = �i and wants to reveal his

payo¤ type si to him, player i also sends the code eisi, so that player j, who
knows the code of the two possible payo¤ types of player i, namely, ei0 and
ei1, can check that player i�s reported payo¤ type is consistent with the codes.
If player i wants to lie on his payo¤ type, he has to guess the corresponding
code, with a probability of 1� 1

jEj of being detected by player j.
18

Even if no communication device is available, every player can detect a lie
of the other with high probability, by checking the codes, but this typically
happens after that useful information has been transmitted. The situation is
very di¤erent when there is a communication device. In this case, the device
does not release any information when it detects cheating, which protects
the honest player. This e¤ect cannot be simulated at a Nash equilibrium of
a cheap talk game extending �.

18The technique of codes is also useful in the proof of theorem 1. However, in the current
example, codes are not generated by a correlation device but as part of the types in the
Bayesian game.
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Let us show that the vector of conditional expected payo¤s ((3; 3); (3; 3)) 2
ME(�). For that, we describe a canonical communication device q : L !
�A. Every player i, i = 1; 2, reports a type (ri; ei; "�i0 ; "

�i
1 ) to the communi-

cation device q, which then recommends actions as follows:

1. if ei = "iri and e
j = "j

rj
, q computes r = r1 + r2 (mod 2) and sets

a1 = a2 = r.

2. otherwise, q chooses an action pro�le (a1; a2) uniformly.

Let us check that q de�nes a communication equilibrium. Assume that
player j is honest and obedient and consider player i = �j with type
(si; eisi ; e

�i
0 ; e

�i
1 ). Suppose �rst that r

i 6= si, namely that player i lies on
his component of the secret. Player i has no information on the code eiri,
which has been chosen with probability 1

jEj in E; he will thus guess it cor-
rectly with probability 1

jEj . In this case, the device recommends actions
a1 = a2 = ri + sj; by playing against the recommendation of the device,
player i gets the highest possible payo¤, 6. Otherwise, if player i does not
guess eiri correctly, the device selects actions uniformly, and player i can as
well play against the recommendation of the device. His total expected payo¤
is 1

jEj � 6 + (1 �
1
jEj) �

�
1
4
� 3 + 1

4
� 6 + 1

4
� (�2)

�
, which is < 3 as soon as

jEj � 4. All other possible deviations of player i, e.g., involving cheating
in the other player�s codes, either give rise to a higher probability of being
detected and reduce his expected payo¤, or have no e¤ect on the payo¤s. As
we already observed above, while completely revealing in terms of the pay-
o¤ types (in S1 � S2), the communication equilibrium expected payo¤ (3; 3)
cannot be achieved as a Nash equilibrium of a cheap talk game like extM�.
The vector of conditional expected payo¤s ((3; 3); (3; 3)) is in SINTIR(�):

by playing both actions with probability 1
2
, independently of his type, player j

guarantees that player i = �j�s payo¤ does not exceed 7
4
, whathever his type

and his action19. Obviously, this punishment depends on the fact that player
i does not know player j�s share of the secret. By theorem 1, ((3; 3); (3; 3))
can thus be achieved as a correlated equilibrium of a long cheap talk game
extM�, for some �nite set of messages M . We show below that in any ex-
tended cheap talk game in which the number of stages is �xed, the players
cannot reach ((3; 3); (3; 3)).

19In fact, the strategies consisting of playing both actions with the same probability,
independently of the type, form a Bayesian-Nash equilibrium.
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Let us �x an extension extTM� of � in which the cheap talk phase cannot
exceed T stages. Every stage t = 0; 1; :::; T of extTM� can be described as
in extM�, for some set M of messages, but the moves in fc; sg are not
necessary: the game goes on for T + 1 stages, with �nal decisions at stage
T + 1, whatever the history20. Let us assume that extTM� has a correlated
equilibrium achieving the expected payo¤ (3; 3), namely complete revelation
of the secret. At the last stage T , both players must know the secret on every
possible history on the equilibrium path. Without loss of generality, this does
not happen at stage T � 1, otherwise the deadline could be T � 1.
Thus, at the end of stage T �1, there exists a history hT�1 = (l; !; hT�1),

where hT�1 is the sequence of messages up to stage T �1, which has positive
probability at equilibrium, for which at least one of the players, say player 1,
does not know the secret, namely, player 1�s posterior probability that player
2�s type is 0 is not 0 or 1. Hence, on hT�1, player 1 relies on player 2�s
message at stage T to learn the secret. Note that the history hT�1 involves
the choice ! = (!1; !2) of the underlying correlation device, hence is not
necessarily fully identi�ed by player 2. But player 2 can select his message
uniformly, independently of the past, at stage T . If player 2 deviates in this
way (only at stage T ), while player 1 does not deviate, player 2 learns the
secret at stage T , on every possible history, while player 1 does not learn it
at least on hT�1. In the next paragraph, we complete player 2�s deviation
by describing how he chooses his action and we show that his deviation is
pro�table.
At the end of stage T � 1, player 2�s information consists of his type l2,

the private extraneous signal from the correlation device !2 and the messages
exchanged at stages 1; :::; T � 1. Given his information, player 2 determines
the message m2

T he should send at stage T as if he did not deviate. Since
there is no deviation at any stage 1; :::; T � 1, player 1 sends his message m1

T

at stage T as in equilibrium. Even if player 2 deviates at stage T , he has
the same information, at the end of stage T , as when he does not deviate. In
particular, m1

T and m
2
T are part of player 2�s information. We complete his

deviation as follows: after having sent his (uniformly selected) message em2
T

to player 1 and having received player 1�s message m1
T , he chooses his action

in A2 according to his equilibrium strategy as if the messages at stage T were
(m1

T ;m
2
T ). This guarantees him a payo¤ strictly higher than 3 if the history

hT�1 identi�ed above occurs and no less than 3 otherwise. Hence player 2�s

20Hence, on some histories, cheap talk may become vacuous from some stage on.
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deviation is pro�table.

The constructive proof of theorem 1 avoids the obstacles of a bounded
cheap talk phase, by introducing extra uncertainty for the players about the
time t? at which they reveal their part of the secret to each other. In such a
construction, the number of conversation stages cannot be deterministically
bounded. Nevertheless, in equilibrium, the players stop talking with proba-
bility one. The probability that a deviator can a¤ect the conversation in a
way that it lasts forever can be made arbitrarily small. The main idea is that,
at every stage t, player i, say, does not know whether t = t?, i.e., whether
he will receive useful information from player j = �i at that stage. Hence
player i may not have any incentive to send a message which di¤ers from the
one prescribed by the correlation device. In particular, in our construction,
with large probability, a deviation of player i is detected by player j before
that player i learns the secret, so that player j can stop the conversation and
punish player i in the initial Bayesian game �, with prior p.

To sum up, the proof of theorem 1 will con�rm that, in the secret sharing
game, the players learn the secret with probability 1 after a random �nite
number t? of stages of correlated cheap talk (namely, x = ((3; 3); (3; 3)) 2
CE(extM�)). We have shown that this result cannot be true if t? is imposed
not to exceed a �xed, deterministic bound T , i.e., that x =2 [T�1CE(extTM�).
The requirement that the players learn the secret with probability 1 is essen-
tial to this observation, as will follow from proposition 1. To see that this
proposition applies to the secret sharing game, let us set � = ((2; 2); (2; 2)).
� is the payo¤ of a Bayesian-Nash equilibrium, in which one of the players
chooses the action 0, independently of his type, and the other player chooses
the action 1, independently of his type. Furthermore, � 2 SINTIR(�), since
as noticed above, every player can guarantee that the other�s interim ex-
pected payo¤ does not exceed 7

4
. Thus, from proposition 1, for every � > 0,

there is a �nite number of stages T such that the game extTM� has a corre-
lated equilibrium at which the players learn the secret with probability at
least 1 � � and thus get approximately the desired payo¤ x, i.e., for every
� > 0, there exist a �nite number of stages T and x� ��close to x such that
x� 2 CE(extTM�). Finally, observe also that the payo¤ x Nash-dominates �
(or ((7

4
; 7
4
); (7

4
; 7
4
))) so that, by proposition 2, it can be achieved with sequen-

tially rational strategies.
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6 Proof of the results

6.1 Proof of theorem 1

Let us �x a communication equilibrium q of �, such that G[q] 2 SINTIR(�).
We shall construct a set of messagesM and a correlated equilibrium of extM�
which satisfy the requirements of the theorem. The precise size of M will be
determined when we check the equilibrium conditions. We start by describing
a correlation device, namely a probability space (
;B; �), and private signals
for every player, namely sub-�-algebras B1 and B2; then we de�ne the players�
strategies.

Items selected by the correlation device: (
;B; �)
We make a list of the items selected by the correlation device. Unless

speci�ed otherwise, these items are selected uniformly in the �nite set to
which they belong and they are all selected independently of each other.

The correlation device selects:

1. for i = 1; 2, a permutation �i of Li; let � = (�1; �2) and �(l) =
(�1(l1); �2(l2)), for every l = (l1; l2) 2 L;

2. a stage t? 2 f2; 3; :::g, according to a geometric distribution with suc-
cess parameter z > 0 to be speci�ed later;

3. for every l 2 L, a pair of actions at?;�(l) 2 A, according to q(:jl);

4. for every l 2 L and every t 2 f2; 3; :::g, t 6= t?, a pair of actions
at;�(l) 2 A;

5. for i = 1; 2, every l 2 L and every t 2 f2; 3; :::g, a permutation �it;�(l)
of Ai; let us set bit;�(l) = �

i
t;�(l)(a

i
t;�(l));

6. for i = 1; 2, every l 2 L, every action bi 2 Ai and every t 2 f2; 3; :::g, a
�code�ki(t; �(l); bi) 2M ;

7. for i = 1; 2 and every t 2 f2; 3; :::g, a pair of �labels��it 2M such that
�1t? = �

2
t? and �

1
t 6= �2t if t 6= t?;

8. for i = 1; 2, every l 2 L, every t 2 f2; 3; :::g and every label � 2 M , a
�code��i(t; �) 2M .
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To sum up, only t? in 2. and at?;�(l), l 2 L, in 3. are selected according
to a speci�c, non-uniform probability distribution. The stage t? is the only
random variable which is not �nite. In 7., the labels �1t and �

2
t at stage t are

not independent from each other, nor from t. The parameter z represents the
probability that t? be the next stage; z and the size of M will be computed
at the end of the proof (see the expression (4) below).

Private extraneous information: Bi, i = 1; 2.
The correlation device sends the following private signal21 to player i,

i = 1; 2:

- the permutation �i of Li selected in 1.

- the permutations �it;�(l) of A
i, l 2 L, t 2 f2; 3; :::g selected in 5.

- the (encrypted, recommended) actions (for the other player, �i) b�it;�(l) 2
A�i for every l 2 L, t 2 f2; 3; :::g de�ned in 5, together with their
associated code k�i(t; �(l); b�it;�(l)) selected in 6.

- the code functions ki(t; �(l); :) : Ai ! M for every l 2 L, t 2 f2; 3; :::g,
selected in 6.

- the labels �it, t 2 f2; 3; :::g selected in 7., together with their associated
code �i(t; �it) selected in 8.

- the code functions (of the other player, �i) ��i(t; :) : M ! M for every
t 2 f2; 3; :::g, selected in 8.

We denote player i�s private signal as

!i =

2664
�i

(�it;�(l))t�2;l2L
(b�it;�(l); k

�i(t; �(l); b�it;�(l)); k
i(t; �(l); :))t�2;l2L

(�it; �
i(t; �it); �

�i(t; :))t�2

3775 (2)

At this point, the description of the game (extM�)� is complete.

21It is understood that functions over L = L1 � L2 are described as L1 � L2 tables, for
a given order on L1 and L2.
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Equilibrium strategies (�1;�2) in (extM�)�

We �rst give a rough description of the strategies (�1;�2) and of the
way in which they combine with each other. The basic idea is that the
geometric random variable t? describes the only relevant stage, in which
players determine the actions ait?;�(l), i = 1; 2, to be played in the Bayesian
game. For every l, the pair of actions at?;�(l) selected in 3. is distributed
according to q(:jl). However, the players cannot fully reveal their types to
each other nor know more than their own action. Hence permutations are
applied both to the types (�i, selected in 1.) and to the actions (�it?;�(l),
selected in 5.). At stage 1, the players send hidden types, �i(li), i = 1; 2, to
each other. At stage t?, every player i sends the message b�it?;�(l) to the other
player. If player i indeed receives the message bit?;�(l) from the other player,
he is able to evaluate his action as ait?;�(l) = (�

i
t?;�(l))

�1(bit?;�(l)), by applying
the inverse of the permutation �it?;�(l), and this action will be distributed
as in the communication equilibrium. There remains to make every player
able to identify t?, only after having transmitted his recommended action
b�it?;�(l) to the other player. This is the role of the labels selected in 7. By
construction, as in the communication equilibrium, player i will not gain by
pretending another type at stage 1 or deviating from his recommended action
ait?;�(l). But player i must transmit a recommended action b

�i
t?;�(l) to the other

player, which has no counterpart in the communication equilibrium. This is
the role of the codes22 selected in 6. In order to prevent cheating in the labels,
further codes are needed, selected in 8. We detail the equilibrium strategies
in the next paragraph.

Given his private extraneous signal !i described above, player i�s equilib-
rium strategy in extM� is as follows:

- at stage 1, player i chooses c; if both players select c, player i announces
�i(li) if his type is li; otherwise, he plays a punishment action against
the other player and the game stops (recall that G[q] 2 SINTIR(�),
so that player i can select a punishment23 according to some yi(:jli) 2

22Restricted to two stages, t = 1 and t? chosen deterministically equal to 2, the corre-
lation device is a variant of the one used in Forges (1990b) in the case of three players.
23To be consistent with our de�nition of strategies in (extM�)�, in which all random-

izations are made by the correlation device, possible punishment strategies should in fact
be selected by the correlation device.
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�A�i); let �(l) be the pair of announcements at the �rst stage (if (c; c)
was chosen).

- at stage 2, player i chooses c

- at every stage t � 2, if both players select c, player i sends the message:

b�it;�(l); k
�i(t; �(l); b�it;�(l)); �

i
t; �

i(t; �it)

- at stage 2, if (c; c) was not selected, player i punishes the other player, as
in stage 1.

- at every stage t � 2, if (c; c) was selected, then, right after having re-
ceived the other player�s last message, player i checks whether the lat-
ter is consistent with the codes, namely that player �i�s announcement
(bit; k

i
t; �

�i
t ; �

�i
t ) satis�es:

kit = k
i(t; �(l); bit); �

�i
t = ��i(t; ��it )

If these equalities do not hold at stage t, player i stops the cheap
talk, that is, he chooses s at the beginning of stage t + 1 and plays a
punishment action against the other player as above.

- at every stage t � 2, if (c; c) was selected, player i also checks whether
his label �it coincides with the label sent by the other player, namely
whether �it = ��it . If yes, and no deviation was detected, player i
concludes that t = t?; he chooses to stop (namely, s) at the beginning
of stage t+1, the cheap talk ends and player i determines his action ai

by applying the inverse of the permutation �it;�(l) (which he received
from the correlation device) to the message bit (which he received from
the other player):

(�it;�(l))
�1(bit) = a

i

- if, at the beginning of some stage t � 3, player i chooses c but the other
player j (= �i) chooses s, player i punishes player j as above.

- should cheap talk last forever, di1 (i = 1; 2) could be de�ned in an arbitrary
way.
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To sum up, if both players follow the prescribed strategies, the conversa-
tion lasts for at least 2 stages. Stage 1 is the only stage where the players
send a type dependent message, but posteriors are not updated until stage
t? is reached. Stages t � 2 are used for possible coordination. Coordination
happens when �1t = �

2
t , namely when t = t

?; in this case, �nal decisions are
made at stage t? + 1.
In order to check that the prescribed strategies form an equilibrium in

the game (extM�)�, we assume for simplicity that player 2 does not devi-
ate in (extM�)� and consider possible deviations of player 1. Let l1 be his
type and !1 be his extraneous signal, described as in (2). Since player 1�s
payo¤ G1[q] is individually rational, he cannot bene�t from choosing s at
the beginning of stage 1 of (extM�)�; let thus �1(l̂1) be his further message
at stage 1, with l̂1 possibly di¤erent from l1. We shall distinguish between
several deviations of player 1. We start with deviations which are already
feasible in the communication equilibrium and we show that they are un-
pro�table, namely, that the correlated equilibrium of (extM�)� �mimics�the
communication equilibrium.

Equilibrium conditions: undetectable deviations
Let us assume that from stage 2 on, player 1 sends all his messages as

prescribed by his correlated strategy. More precisely, let t � 2 be a stage t
at which the conversation is still going on. Given our current assumptions,
it must be that �1r 6= �2r for every stage r such that 2 � r < t. At the
beginning of stage t, player 1 has not learnt anything on t?, player 2�s type nor
recommended actions, since all items that player 1 can interpret in !1 have
been selected uniformly (this holds in particular for every action b2

t;�1(l̂1);�2(l2)
,

including b2
t?;�1(l̂1);�2(l2)

, which is obtained by applying a random permutation

to a2
t;�1(l̂1);�2(l2)

). Furthermore, at the beginning of stage t, given !1 and

the sequence of moves in (extM�)� up to stage t (including his �rst move
�1(l̂1)), player 1 anticipates that the pair of actions to be determined (but
not necessarily played) at the further stage t? will be

(�it?;�1(l̂1);�2(l2))
�1(bi

t?;�1(l̂1);�2(l2)
) = ai

t?;�1(l̂1);�2(l2)
i = 1; 2 (3)

By construction, given player 1�s information at the beginning of stage t, this
pair of actions is distributed according to q(:jl̂1; l2). In other words, if player
2 does not deviate and player 1 of type l1 sends �1(l̂1) at the �rst stage and
all his other messages as prescribed, the actions computed by the players at
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stage t?, namely (3), are distributed exactly as the actions recommended by
the communication device q when player 1�s reported type is l̂1 and player
2�s type is l2. Hence player 1 will not deviate at the �rst stage by lying on
his type and/or at t? +1 by choosing another action than the one computed
in (3).
The previous paragraph also shows that, if both players follow the pre-

scribed strategies at every stage, the conditional probability distribution over
actions (i.e., over A1 �A2) given types (l1; l2) 2 S1 � S2 is q(:jl1; l2); in par-
ticular, the expected payo¤s are G[q].
We consider further possible deviations of player 1.

Equilibrium conditions: deviations which are detectable with high probability
Let l1, !1 and l̂1 be as above. As already observed for stage 1, if player 2

does not deviate, player 1 cannot gain in sending his messages as prescribed
and choosing s at the beginning of a stage at which he should choose c, since
his payo¤G1[q] is individually rational.
As above, let us consider a stage t at which the conversation is still going

on; assume that player 1 does not send (at least one of) the prescribed vari-
ables b2

t;�1(l̂1);�2(l2)
and �1t in his message to player 2. Then, since the codes are

chosen uniformly inM , the corresponding codes k2(t; �1(l̂1); �2(l2); b2
t;�1(l̂1);�2(l2)

)

and �1(t; �1t ), will be incorrect with probability (at least) 1�1=jM j, in which
case player 2 will detect an inconsistency, stop the conversation and choose
his action according to a �punishment�strategy y2(:jl2). If it turns out that
�1t 6= �2t , player 1 will not have learnt anything; in particular his probabil-
ity distribution over L2 will still be p(:jl1). In this case, player 2 can pick
the strategy y2(:jl2) in such a way that player 1�s payo¤ does not exceed
G1[qjl1]� �, for some � > 0, since G1[q] is strictly individually rational in the
original game � (whose parameters involve the prior p). However, if �1t = �

2
t ,

so that t = t?, player 1 acquires new information; the e¤ect of the �pun-
ishment�strategy becomes unclear, except for the fact that player 1�s payo¤
cannot exceed the largest possible payo¤ in the game �, which we denote
by �. Finally, if player 1�s deviation is not detected, his payo¤ can also be
bounded by � (in this case, the conversation could be in�nite). By recalling
that, at every stage t at which the game has not yet stopped, the probability
that t = t? is z, we compute the following upper bound on player 1�s payo¤
G1dev(l

1) when he deviates as described above:

G1dev(l
1) � (1� 1=jM j)(z� + (1� z)(G1[qjl1]� �)) + �=jM j (4)

28



If the set M of messages24 is large enough and the probability z > 0 is small
enough, the previous bound will not exceed G1[qjl1], namely

G1dev(l
1) � G1[qjl1]

We have thus shown that the correlated strategies described above form an
equilibrium of the game (extM�)� which achieves the conditional probability
distributions q(:jl) of the communication equilibrium, in particular, the payo¤
G [q]. At equilibrium, given the geometric distribution of t?, the conversation
ends with probability one.�

6.2 Proof of proposition 1

Let � be a Bayesian Nash equilibrium payo¤ such that � 2 SINTIR(�) and
let x 2ME(�)\SINTIR(�). There exists � > 0 such that player i (i = 1; 2)
has strategies yix and y

i
� to punish player j = �i in � at the payo¤ vectors

(xj(lj)� �)lj2Lj and (�j(lj)� �)lj2Lj , respectively.
Let � be given; let us choose � 2 (0; 1) such that

x� � (1� �)x+ ��

is ��close to x (i.e., �jj� � xjj � �).
We temporarily �x T . Let the correlation device make its choices as in

the proof of theorem 1, in particular, let t? be chosen as in 2., according
to a geometric distribution with parameter z (which is also �xed for the
moment) and let actions be chosen as in 3., using q. Let player i�s prescribed
strategy be as in the proof of theorem 1 as long as he does not detect any
deviation, and if he deduces that t? � T . Let player i play the Bayesian
Nash equilibrium strategy associated with payo¤ � if he detects no deviation
until stage T and concludes that t? will be > T .
If the players follow the previous strategies, the expected payo¤ of player

j of type lj, just before stage t, i.e., conditionally on t? � t, is

xjt(l
j) = xjt(z; T )(l

j) � (1� (1� z)T�t+1)xj(lj) + (1� z)T�t+1�j(lj) (5)

By the above properties of x and �, player i can punish player j = �i
at the payo¤ vector (xjt(l

j)� �)lj2Lj if player j deviates at stage t, for every
24The bound (4) re�ects the required size of M as far as codes are concerned. The set

M should of course be also large enough to contain the other messages to be transmitted
by the players (i.e., jM j � max

�
jLij; jAij; i = 1; 2

	
).
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t � T , by playing yix with probability 1�(1�z)T�t+1 and yi� with probability
(1� z)T�t+1. Hence, by proceeding as in (4), if player j deviates at stage t,
his expected payo¤ cannot exceed

(1� 1=jM j)(z� + (1� z)(xjt(lj)� �)) + �=jM j

We can choose jM j and z (as a function of �) in such a way that, for every
j; lj and t � T , this bound be � xjt(lj).25 This guarantees that no player can
gain in deviating at any stage t � T . The corresponding equilibrium payo¤ is
computed from (5) at t = 1. More precisely, we choose z0 < z and T = T (z0)
such that x1(z0; T ) = x1(z0; T (z0)) = x�, i.e., � = (1� z0)T .�

Remark: the assumption � 2 SINTIR(�) in proposition 1
In the previous proof it is an essential assumption that � 2 SINTIR(�).

Intuitively, just before the last stage of the game, i.e., when t = T , the players�
equilibrium expected payo¤ becomes xT (z; T ) = zx + (1 � z)� (omitting
the indices j, lj). If � itself is in SINTIR(�), we can choose the level of
punishment to be xT � �. When choosing z to be su¢ ciently small the
di¤erence between the equilibrium payo¤ and the punishment stays constant
at �. If � 2 INTIR(�) n SINTIR(�), by proceeding as in corollary 2,
xT (z; T ) can still be supported by strict punishment, namely by vT = z(x�
�)+(1�z)�. However, in this case the di¤erence xT (z; T )�vT = z� converges
to 0 as z goes to 0. Hence choosing a smaller z decreases the e¤ectiveness of
punishment, which in turn necessitates the choice of an even smaller z.

6.3 Proof of proposition 2

Let us �x a communication equilibrium q of � such that the associated payo¤
G [q] is Nash-dominating, namely higher than the expected payo¤ of some
Nash equilibrium � = (�1; �2) of �, for every type of every player. Let us
consider the set of messages M and the correlation device � constructed in
the proof of theorem 1; � induces a scenario, namely, a prescribed plan of
actions for every player. As in the proof of theorem 1, player i�s strategy �i

in extM(�)� will �rst consist of following the prescribed plan of actions and
of punishing player j = �i if it appears that player j did not follow the plan
25More precisely, 8 � > 0 9 jM j 2 N, 9 0 < z < 1 such that for any feasible payo¤ 
 in

�, (1� 1=jM j) [z�+ (1� z)(
 � �)] + �=jM j � 
.
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(i = 1; 2)26. Player i will now play � i if he has to punish the other player, but
we have to further complete the description of strategies and beliefs in order
to show that they form a semi-weak PBE. �i will consist of stopping the
game and choosing an action in � according to � i at basically all information
sets such that the prescribed plan of actions was not followed at some earlier
stage, possibly by the player who has to move at that information set27. Such
a speci�cation of �i makes player i�s strategy sequentially rational provided
that player i�s belief over Lj is his prior and that he expects that player j will
play �j. There is only one class of information sets out o¤ the equilibrium
path at which the underlying player will update his belief over the other
player�s type. In the next paragraph, we describe these information sets for
player i and how �i operates at them.
Let t � 2. Assume that player i followed the prescribed plan of actions

at all stages < t but does not follow it at stage t. Assume also that player
i observed correct codes in player j�s messages at all stages � t and that
player j�s reported label at stage t, �jt , coincides with the label �

i
t that player

i received from the correlation device �. At such an information set, player j�s
moves are exactly the same as on the equilibrium path. Since our semi-weak
PBE requires that player i�s beliefs on player j�s type lj does not depend
on player i�s own last move, player i must update his belief over Lj. We
also assume that player i believes that player j will detect his deviation and
will thus punish him immediately, by stopping the game at the beginning
of stage t + 1 and playing �j. Note that semi-weak PBE does not restrict
player i�s belief over !j, so that player i can indeed believe that his deviation
is detected with probability 1, even if M is �nite. In order that player i be
sequentially rational at the described information set, �i speci�es that he
stops the game and plays a best response against �j given his updated belief
over Lj.
If at some stage, player i updates his belief in the way just described and

26Player i detects that player j has deviated from the plan typically when he receives
an incorrect code. If q is such that some actions of player i have zero probability given his
type, player i may also detect a deviation of player j from his computed action when he
concludes that t? has been reached. We focus on the typical case but the second one can
be handled similarly.
27To be complete, we must also consider the case of information sets occurring at the

second substage of some stage t � 2, after that both players chose �continue�while the
prescribed plan of actions was not followed at an earlier stage. In this case, �i prescribes
to choose a message uniformly and to stop at the next stage.
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the game goes on, even for in�nitely many stages, player i keeps his belief
over Lj without modifying it any further. At all other information sets out
o¤ the equilibrium path, player i does not update his belief over Lj, stops
the game and plays � i. In particular, consider the following situation: player
i �rst deviates at some stage t, then concludes that t? > t, but the game
nevertheless goes on until stage t0 > t and player i again deviates at stage
t0; even if the labels at stage t0 lead player i to the conclusion that t? = t0,
player i does not update his beliefs over Lj at t0, stops the game and plays
� i.28

Consider now the typical case where player i followed the plan of actions
induced by � at all stages � t, for some t � 2, and discovers, through the
codes that he receives from player j, that player j did not follow the plan at
stage t. This must be player j�s �rst observed defection since otherwise player
i, who followed the scenario, would have stopped the game. As soon as player
j deviated from the prescribed scenario, no constraint must be imposed on
player i�s belief over Lj, which can thus be kept at the prior. In particular,
even if only player j�s code on player i�s encrypted action is incorrect while
player j�s reported label �jt coincides with the label �

i
t that player i received

from the correlation device, player i can believe that player j�s reported label
�jt is in fact incorrect and that player j luckily picked his label code. As a
consequence, player i can believe that player j did not update his belief over
Li and expects that player j will play �j. Recall that, as detailed above, it is
indeed sequentially rational for player j to stop the game and play �j after
his deviation in this case. With these beliefs, player i is sequentially rational
by stopping the game at the beginning of stage t+ 1 and punishing player j
using � i.
The reasoning of the previous paragraphs can be applied to any infor-

mation set occurring after some �nite stage t � 2. Let us come to the case
where cheap talk never stops. If player i always followed the prescribed plan
of actions, it means that he did not detect any incorrect code but could not
identify t?. Player j must thus have deviated from the prescribed scenario,
say at stage t0, by not reporting the correct �jt0, and must have been lucky
in picking the associated code. Player i�s belief over Lj is still the prior and
furthermore, player i can expect that player j will play �j because player j

28Player i�s beliefs over Lj at stage t0 are not restricted by our semi-weak PBE but are
coherent with the belief that player j detected player i�s �rst deviation at stage t, failed
to punish player i and chose messages uniformly from then on.
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himself did not update his belief over Li. Indeed, player i can believe that
player j�s �rst deviation occurred at some stage t < t0 such that, just after
stage t, player j deduced that t? > t; player j expected to be punished by
player i at stage t + 1 and having realized that player i did not follow the
plan, player j did not update his belief at stage t0 (player i�s belief is coherent
with the fact that player j only updates his belief over Li at his �rst devia-
tion, as explained above). Finally, assume again that cheap talk never stops
and that player i did not follow the plan at some stage t. If he updated his
belief over Lj at the corresponding information set as described above, he
kept this belief since stage t and plays a best response against �j given this
belief. Otherwise, he plays � i.�

7 Discussion: variants of the model

We start with a variant of the strategic form correlated equilibria considered
up to now. Then we consider two particular cases in which theorem 1 takes
a much simpler form. Finally, we address a question mostly motivated by
Ben-Porath (2003, 2006).

7.1 Extensive form correlated equilibria

The proof of theorem 1 makes use of typical correlation devices for the long
cheap talk game extM�, which select, before the beginning of the game, an
in�nite sequence of extraneous signals to be used gradually by the players.
The corresponding correlated equilibria can be denoted as �strategic form
correlated equilibria�. What if the players do not have access to (or can-
not generate29) in�nite sequences of correlated extraneous signals, at once,
at the beginning of the game? One could then consider extensive form, au-
tonomous correlation devices which send one private signal to every player
at every stage of extM� (see Forges (2006) and Myerson (2006, 1991)). Such
devices generate sunspots every day. They are independent of the cheap talk
game, in the sense that they do not receive any input from the players and
do not get any information on the players�messages. They thus preserve the

29Players can simulate �nite correlation devices by themselves by using simple machines
(like Turing machines, see Dodis, Halevy and Rabin (2000) and Urbano and Vila (2002))
or the AND signalling function (see Vida (2007b)).
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players�privacy. The previous proof shows that theorem 1 still holds if �cor-
related equilibrium�is replaced by �extensive form, autonomous correlated
equilibrium using �nitely many signals at every stage�. Corollary 1 also holds
for the set gCE(ext�) of extensive form, autonomous correlated equilibrium
payo¤s, since CE(ext�) �gCE(ext�) �ME(�).
7.2 Sender-Receiver games

As a particular case, let us assume that only player 1 possesses private in-
formation (jL2j = 1) and that only player 2 makes a decision (jA1j = 1).
Under these asumptions, the cheap talk game becomes a �sender-receiver�
game, in which the length of the players�conversation is not �xed in advance
(as in, e.g., Forges (1990a), Aumann and Hart (2003)30, Forges and Koessler
(2008)). We shall deduce from the proof of theorem 1 that t? can be chosen
in a deterministic way, as t? = 1. Let us set L = L1 and A = A2 and let us
consider a correlation device as above, which selects the following items

1. a permutation � of L;

2. for every l 2 L, an action a�(l) 2 A, according to q(:jl);

3. for every l 2 L, a permutation ��(l) of A; let us set b�(l) = ��(l)(a�(l));

4. for every l 2 L and every action b 2 A, a �code�k(�(l); b) 2M ;

The correlation device transmits
to player 1: � and (b�(l); k(�(l); b�(l)))l2L
to player 2: (��(l); k(�(l); :))l2L

Given the signal from the correlation device and his type l, player 1�s equi-
librium strategy is to send �(l), b�(l) and k(�(l); b�(l)) to player 2 at a single
stage of information transmission. Given his private signal (��(l); k(�(l); :))l2L
and player 1�s message (l̂; b;m), player 2 checks whether the code is correct,
namely that m = k(l̂; b); if it is the case, he chooses the action (�l̂)

�1(b);
otherwise he chooses his action according to q(:jl), for some arbitrary l 2 L.
By proceeding as above, one shows that these correlated strategies form an
equilibrium, which is equivalent to the communication equilibrium q. Forges

30Aumann and Hart (2003) assume one sided private information, namely, jL2j = 1, but
allow both players to make decisions.
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(1985, lemma 2) establishes a slightly stronger result, namely that every com-
munication equilibrium payo¤ (even not in SINTIR(�)) can be achieved as
a correlated equilibrium payo¤ of the cheap talk game. As already pointed
out, Blume (2010) proves an analog in Crawford and Sobel (1982)�s model.

7.3 Uniform punishments

The proof of theorem 1 dramatically simpli�es if the communication equi-
librium payo¤ of � to be implemented as a correlated equilibrium payo¤ of
extM� is higher than a punishment payo¤ that can be achieved for every
probability distribution p 2 �L. This happens for instance if � has a �bad
outcome�that every player can enforce, whatever the types are.
More precisely, recalling expression (1), let G[q] = (Gi[qjli]li2Li)i=1;2 2

ME(�) be a communication equilibrium payo¤ for which there exist yi :
Li ! �Ai, i = 1; 2, such that, for every i = 1; 2; l = (li; l�i) 2 L; ai 2 Ai,

Gi[qjli] �
X
a�i

y�i(a�ijl�i)gi((li; l�i); ai; a�i)

Then, in the proof of theorem 1, in order to achieve G[q] as a payo¤ in
CE(extM�), t? can be chosen in a deterministic way, as t? = 2. The corre-
lation device can dispense with selecting the labels and all items associated
with t > 2. Indeed, if player i�s code k�i(2; �(l); b�i2;�(l)) at stage 2 is not
correct, player �i can punish him by playing the strategy y�i in �, which
guarantees that player i�s payo¤ does not exceed Gi[qjli], independently of
the information that player i may have acquired at stage 2, i.e., even if player
i learns the type l�i of player �i.
However, in many interesting situations, when a player has obtained fur-

ther information on the other�s type, it becomes impossible to punish him
below his communication equilibrium payo¤. This is exactly what happens
in the example of section 5 once a player knows the secret.

7.4 �Cheap talk�with delayed messages

The terminology �cheap talk�has been used to cover more or less sophisti-
cated forms of communication between the players. In this paper, we just
allow the players to talk for as long as they like by sending simultaneous
messages to each other. Bárány (1992) and Ben-Porath (2006) consider more
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�exible procedures, like the safe recording, at some stage t, of a message that
can possibly be released at some further stage t0, as a function of the history
at stage t0.
If such a relaxed form of cheap talk is allowed in the framework of the

current paper, the proof of theorem 1 can easily be modi�ed so as to achieve
every payo¤ inME(�)\SINTIR(�) with only four stages of cheap talk. To
see this, let us slightly modify the correlation device of the proof of theorem
1 by chosing t? uniformly in some �nite set T and interpreting it as an
index (rather than a stage). At the �rst stage of cheap talk, the players
exchange information �(l) on their types as before. Then every player i
secretly prepares jT j envelopes, with envelope t containing the encrypted
recommended action b�it;�(l) of the other player, its code k

�i(t; �(l); b�it;�(l)) and
player i�s code function ki(t; �(l); :). At the second stage of cheap talk, the
players exchange their extraneous signals on the labels for all t 2 T at once
(namely, (�it; �

i(t; �it); �
�i(t; :))t2T ). If no deviation is detected at this stage,

they identify the index t?. At the third stage of �cheap talk�, they reveal to
each other the content of all envelopes with index t 6= t? and check that the
codes are consistent. If again no deviation is detected, they open the two
envelopes with index t?.
The conclusion from this exercise is that allowing delayed messages in

cheap talk is by no means innocuous. Indeed, in section 5, we have exhibited
a communication equilibrium payo¤which cannot be achieved as a correlated
equilibrium payo¤ of any game in which cheap talk lasts for a �xed number
of stages and does not involve any delayed message.
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